Antelope User Group Evolution in Israel -Foundation of the Israeli Antelope User Group (IAUG)

Ittai Kurzon The Geological Survey of Israel

Rome

May 18, 2016

2"56'58.53" N 32"03'07.80" E elev - 5592 ft eye alt 720.13 mi

Geological Settings

Presentation Outline

- 1. The Israeli Seismic Network current stage
- 2. Future plans upgrading the system and adding
 - **EEWS** capabilities
- 3. Antelope users in Israel
- 4. Antelope uses in Research in Israel

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat

12°56'58.53" N 32°03'07.80" E elev - 5592 ft eye alt 720.13 mi

1. The Israeli Seismic Network – Current Stage

- Short Period Analog stations 10 stations, S-13 / L4-C
- Broadband Digital stations:
 - ISN 11 stations, Trillium Compact 120s,
 - Trident, VSAT
 - CTBTO 2 3Ch stations, STS-2 / CMG-3T +
 - Array of 16 vertical stations, CMG-3ESP,
 - EuropeT, VSAT / Cellular / Optic

1. The Israeli Seismic Network – Current Stage

Broadband Digital stations:

- CNF 6 stations, STS-2, EuropeT, Cellular
- GE 2 stations, STS-2 / Trillium 240, Q330HR,

VSAT / Cellular

Accelerometer Network – 51 triggered

stations, A800, and others

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat

ISN Accelerometer

2. Future plans - upgrading the system and adding EEWS capabilities

Upgrading the network to full real-time

seismic network

EEWS International Committee

Recommendations

- 132 stations
- 35 stations with both, broadband seismometer and strong motion accelerometer

 97 stations with strong motion accelerometers

> Data SIO, NOAA, U.S. Navy, N Image Landsat

2. Future plans - upgrading the system and adding EEWS capabilities

- Upgrading the network to full real-time seismic network
- The stations are distributed through the country, with extra clustering of stations as a seismic fence along the two main fault systems : Dead Sea Fault (DSF) and Carmel Fault System (CFS).

Data SIO, NOAA, U.S. Navy, N Image Landsat **Israel Seismic Network - Current State**

Upgrading the Real-time

Network

- Low station coverage
- Accelerometer network is mainly triggered
- Large packet size (3-6s)
- Low sampling rate (40sps) at most stations
- In-house acquisition and processing software

Data SIO, NOAA, Imag

The Tender – Technical Aspects

Station Distribution

120 stations

- 79 Strong Motion stations in existing ready-for-installation facilities
- 8 BroadBand + Strong Motion
 stations in existing ready-forinstallation
- **17** SM new stations require construction
- **15** BB+SM new buried stations
- **1** BB+SM special Construction in a 50m

Tour Guide

2. Future plans - upgrading the system and adding EEWS capabilities

Adding EEWS capabilities

- International committee (2012)
- Published a request for information (2014)
- Working on a tender for a turnkey solution (published December 2015, and should be submitted in ~3 weeks)
- Applying noise measurements at the potential sites (2013-2015)
- Sending a postdoc scholar to Berkeley to study the EEWS algorithms and systems (2014-2016)
- Transferring the Division of Seismology at the Geophysical Institute to a new department at the Geological Survey (????-???)

3. Antelope users in Israel March 2015

N

3. Antelope users in Israel May 2016

4. Antelope uses in Research in Israel March 2015

<u>Hydroseismology –</u>

- Joined Database of both seismic and hydrological measures
- Signal processing usingAntelope and the Matlab toolbox.
- With Dr. Eyal Shalev

4. Antelope uses in Research in Israel May 2016

<u>Hydroseismology –</u>

Shalev et al. 2016. Water Level **Oscillations Caused by Volumetric** and Deviatoric Dynamic Strains. Geophys. J. Int., 204, pp. 841-851. Shalev et al. submitted to GJI. Sustained Water Level Changes Caused by Damage and Compaction Induced by Teleseismic Earthquakes.

32"56'58.53" N 32'03'07.80" E elev - 5592 ft

eye alt 720.13 mi

4. Antelope uses in Research in Israel March 2015

Re-Processing of the Israeli Seismic Catalogue

<u>(1985 – 2015) –</u>

Galilee Subset

- 1985-2015
- 2500 events
- 1 < M < 3.5
- 4 < Phases < 40

With Dr. Naday Wetzle

Original GII

Antelope

4. Antelope uses in Research in Israel May 2016

Relocations of the seismicity in the region 1985-2015

13 mi

4. Antelope uses in Research in Israel May 2016

Relocations of the seismicity in the region 1985-2015

Wetzler and Kurzon, 2016. The Earthquake Activity of Israel – Revisiting 30 years of Local and Regional Seismic Record along the Dead Sea Fault. *Seismol. Res. Lett.*, 87(1), pp. 47-58.

Wetzler et al. submitted to Tectonophysics, The relation between stress distribution and recorded seismicity in Northern Israel and its surroundings.

4. Antelope uses in Research in Israel March 2015

Exploring a seismic swarm in the Sea of Galilee in

October 2013

- Re-processing the
- waveforms, beginning with the detection level to increase the catalogue
- Deploying a portable
 network around the cluster area
 with a magnitude range of M > 2, and analyzing the seismicity
 for 6 months.

4. Antelope uses in Research in Israel **May 2016**

Relocations of the events in the region in the past 30 years

Latitude

32.9

4. Antelope uses in Research in Israel May 2016

Relocations of the events in the region in the past 30 years

<u>Re-processing the waveforms:</u>
 Manual Re-processing - increasing the seismic catalogue of the October 2013 seismic

swarm

Tuning Detectors in the station level

Metadata and Instrumentation:

Metadata generation and handling of the

existing network stations

Metadata generation of the new research

network we are deploying in the region

)AA, U.S. Navy, NGA, GEBCO Image Landsat

32°56'58.53" N 32°03'07.80" E elev -5592 ft eye alt 720.13 mi

Deploying a portable network around the cluster area with a magnitude range of M > -2.

Integrating the seismic observations with geodetic observations

done along 5 profiles

Focusing on the 2 northern Geodetic profiles and collaborating with Dr. Yariv Hamiel as part of a Israel Science Foundation project

4. Antelope uses in Research in Israel March 2015

Possibly will be part of the turnkey solution for the new real-time seismic network ???

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat

4. Antelope uses in Research in Israel May 2016

Possibly will be part of the turnkey solution for the new real-time seismic network ???

Thank you

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat

12°56'58.53" N 32°03'07.80" E elev -5592 ft eye alt 720.13 mi

Data SIO, NOAA, U.S. Navy, NGA, GEBCO (Image Landsat

N

AU P

4. Antelope uses in Research in

Directivity analysis of small earthquakes using peak amplitudes -

4. Antelope uses in Research in

Directivity analysis of small earthquakes using peak amplitudes -

4. Antelope uses in Research in

Directivity analysis of small earthquakes using peak amplitudes –

4. Antelope uses in Research in Israel Calibration of seismic station –

Tour Guide

32"56'58.53" N 32"03'07.80" E elev - 5592 ft eye alt 720.13 mi

N

4. Antelope uses in Research in Israel

N

Calibration of seismic station -

4. Antelope uses in Research in Israel

Re-Processing of the Israeli Seismic Catalogue

<u>(1985 – 2015) –</u>

Clustering of events -

